Course Evaluations – Αξιολογήσεις Μαθημάτων

2016 – 2017

Αξιολογήσεις από τους φοιτητές του Τμήματος Μαθηματικών του Πανεπιστημίου Ιωαννίνων.

Evaluations by the students of the Department of Mathematics, University of Ioannina, Greece.

2015 – 2016

Αξιολογήσεις από τους φοιτητές του Τμήματος Μαθηματικών του Πανεπιστημίου Ιωαννίνων.

Evaluations by the students of the Department of Mathematics, University of Ioannina, Greece.

2014 – 2015

Αξιολογήσεις από τους φοιτητές του Τμήματος Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής του Πανεπιστημίου Ιωαννίνων.

Evaluations by the students of the Department of Computer Science & Engineering, University of Ioannina, Greece.

2013 – 2014

Αξιολογήσεις από τους φοιτητές του Τμήματος Χημείας του Πανεπιστημίου Ιωαννίνων.

Evaluations by the students of the Department of Chemistry, University of Ioannina, Greece.

Contact – Επικοινωνία

email

  • 001 (preferred / προτιμώμενο)
  • 002 (job / εργασίας)

facebook

https://www.facebook.com/kyriakos.g.mavridis


google+

https://www.google.com/+KyriakosMavridis


skype

  • Search for 001
  • Κάντε αναζήτηση για 001

website / ιστοσελίδα

http://users.uoi.gr/kmavridi/


postal mail / ταχυδρομείο

  • Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
  • Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων, 45110 Ιωάννινα

phone / τηλέφωνο

(0030) 26510 08237


office / γραφείο

  • 509e, 5th floor, Department of Mathematics Building, University of Ioannina
  • 509e, 5ος όροφος, Κτήριο Τμήματος Μαθηματικών, Πανεπιστήμιο Ιωαννίνων

Papers – Εργασίες

  1. Article  |  MathSciNet
    Kyriakos G. Mavridis, Existence of positive solutions for a class of arbitrary order boundary value problems involving nonlinear functionals, Ann. Polon. Math. 112 (2014), No. 3, 313–327.
  2. Article  |  MathSciNet
    K.G. Mavridis and P.Ch. Tsamatos, Conditions for the existence of positive solutions covering a class of boundary value problems in a uniform way, Nonlinear Anal. 75 (2012), Issue 10, 4104-4113.
  3. Article unavailable onlineMathSciNet
    K.G. Mavridis and P.Ch. Tsamatos, Existence of positive solutions of a terminal value problem for second order differential equations, Commun. Appl. Anal. 15 (2011), No. 2, 3 and 4, 539-546.
  4. Article  |  MathSciNet
    K.G. Mavridis and P.Ch. Tsamatos, Existence results for a functional boundary value problem on an infinite interval, Funk. Ekv. 54 (2011), 53-68.
  5. Article  |  MathSciNet
    Mavridis, K. G., Two modifications of the Leggett-Williams fixed point theorem and their applications, Electron. J. Differential Equations 2010, No. 53, 11 pp. (electronic).
  6. Article  |  MathSciNet
    Mavridis, K. G.; Philos, Ch. G.; Tsamatos, P. Ch., Multiple positive solutions for a second order delay boundary value problem on the half-line, Ann. Polon. Math. 88 (2006), no. 2, 173-191.
  7. Article  |  MathSciNet
    Mavridis, K. G.; Philos, Ch. G.; Tsamatos, P. Ch., Existence of solutions of a boundary value problem on the half-line to second order nonlinear delay differential equations, Arch. Math. (Basel) 86 (2006), no. 2, 163-175.
  8. Article  |  MathSciNet
    Mavridis, Kyriakos G.; Tsamatos, Panagiotis Ch., Two positive solutions for second-order functional and ordinary boundary-value problems, Electron. J. Differential Equations 2005, No. 82, 11 pp. (electronic).
  9. Article  |  MathSciNet
    Karakostas, G. L.; Mavridis, K. G.; Tsamatos, P. Ch., Triple solutions for a nonlocal functional boundary value problem by Leggett-Williams theorem, Appl. Anal. 83 (2004), no. 9, 957-970.
  10. Article  |  MathSciNet
    Mavridis, K. G.; Tsamatos, P. Ch., Positive solutions for first order nonlinear functional boundary value problems on infinite intervals, Electron. J. Qual. Theory Differ. Equ. 2004, No. 8, 18 pp. (electronic).
  11. Article  |  MathSciNet
    Mavridis, K. G.; Tsamatos, P. Ch., Positive solutions for a Floquet functional boundary value problem, J. Math. Anal. Appl. 296 (2004), no. 1, 165-182.
  12. Article  |  MathSciNet
    Karakostas, G. L.; Mavridis, K. G.; Tsamatos, P. Ch., Multiple positive solutions for a functional second-order boundary value problem, J. Math. Anal. Appl. 282 (2003), no. 2, 567-577.